
Abstract- 25% of the world’s 50 million people with epilepsy 
have seizures that cannot be controlled by medication or 
epilepsy surgery.  The need for new therapeutic options is 
clear.  Since the 1970’s clinicians, neuroscientists and 
engineers have proposed technologies for treating seizures, 
with the ultimate goal of implanting stimulators or drug 
infusion devices in brain to abort seizures before clinical 
onset.  Interest in the field has exploded in recent years, due 
to evidence suggesting that seizures may be predictable. 
Device designs range from “blind” stimulators, which do not 
respond to physiological activity, to “intelligent” devices, 
which are triggered by detecting or predicting seizure onset.  
To gain acceptance, intracranial implants will need to 
demonstrate more than marginal efficacy to justify their 
invasiveness.  Unlike their cardiology predecessors, 
intelligent implantable epilepsy devices will likely process 
multiple channels of data, be tuned to individual patients and 
may need to predict events rather than detect them, for 
maximal effectiveness. Carefully designed clinical trials will 
be required to perfect and validate the efficacy of implantable 
devices for epilepsy, before clinical use becomes widespread.  
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I. BACKGROUND 
 

 As early as 1954, Penfield and Jasper suggested that a 
central functional structure deep in the brain was responsible 
for propagating epileptic seizures from discrete, electrically 
unstable areas, or foci, to broad regions of the cerebral cortex 
[1].  Research over the next three decades reinforced the idea 
that seizures likely spread through discrete, functional 
neuronal networks [2].  
 Over the last 15 years, researchers have demonstrated 
that it is possible to modulate the activity of functional 
neuronal networks in animal models of epilepsy by electrical 
stimulation and localized infusion of antiepileptic drugs.  
These methods can be used to arrest, suppress or increase 
resistance to epileptic seizures.  Target regions have included 
central structures, such as the subthalamic nucleus [3], the 
anterior thalamic nucleus [4], the hypothalamus [5], 
mamillary bodies [6], cerebellum [7], basal ganglia [8], locus 
ceruleus [9] and the substantia nigra [10].  At the same time 
some investigators have demonstrated similar proof of 
principle by stimulating more peripheral extensions of the 
central nervous system, such as the vagus nerve in dogs [11] 
and the trigeminal nerve in rodents [12].  In-vitro experiments 

in hippocampal slice models of epilepsy, have demonstrated 
the effectiveness of not only direct electrical stimulation in 
arresting seizures [13], but also through applying magnetic 
fields [14] and local cooling coils (Peltier devices) [15].  In 
addition, seizures have been arrested in animal models of 
epilepsy through local infusion of antiepileptic drugs into 
regions generating seizures (epileptic foci) [16].  Though 
important first steps, these experiments are far removed from 
demonstrating efficacy in human epilepsy.   Sorting out how 
and where to intervene with electrical stimulation or drug 
infusion to treat which type(s) of human epilepsy, is one of 
the major challenges in developing implantable antiepileptic 
devices. 

 
 Based upon this animal literature, beginning in the 
1970s, investigators initiated early clinical trials of brain and 
peripheral nerve stimulation in humans with medically 
resistant epilepsy. These included trials of cerebellar 
stimulation [17], centromedian thalamus [18] and periodic 
hippocampal stimulation [19].   These studies demonstrated 
that chronic, intracranial electrodes are well tolerated, and 
encouraging preliminary results.   Because of their lack of 
controls and unblinded design, in most cases, these results 
have demonstrated sufficient efficacy to support Food and 
Drug Administration device approval.  Two double-blind, 
controlled trials of brain stimulation for epilepsy published to 
date have been less encouraging, demonstrating low efficacy 
for cerebellar [20] and centromedian thalamus stimulation 
[21].  These studies all used paradigms of intermittent, 
“blind” stimulation, in which stimulators were turned on and 
off at regular intervals, independent of the patient’s state of 
awareness or proximity in time to seizures. There are as of yet 
no authoritative, published positive results of double blind, 
controlled clinical trials of electrical stimulation on the 
surface or in the substance of the brain for intractable 
epilepsy.   
 The vagal nerve stimulator (VNS) is the first implantable 
medical device approved by the FDA for the treatment of 
epilepsy. This device consists of an implantable, pacemaker-
like stimulation unit implanted under the clavicle, connected 
to an electrode wrapped around the vagus nerve on the left 
side of the neck.  The device reduces seizure frequency an 
average of 20-30% in most individuals, with an 
approximately 10% chance of being seizure-free [22]. 

 In 1999, Lesser et al. reported that focal electrical 
stimulation of the cerebral cortex can suppress rhythmic after-
discharges provoked by stimulation mapping of cortical 
function prior to epilepsy surgery via subdural electrodes.  In 
this study, after-discharges were suppressed by short 
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duration, bipolar current pulses applied to the electrode 
contacts generating the after-discharges [23].  This is one of 
the first studies in man demonstrating the efficacy of reactive 
or “intelligent” brain stimulation in the region of the epileptic 
focus as a means of suppressing seizure-like activity in 
humans.    In this case the “intelligence“ consisted of a 
physician, or staff member, recognizing the presence of 
afterdischarges on the EEG and triggering counter 
stimulation. While encouraging, these results must be viewed 
with the understanding that the link between provoked 
afterdischarges and spontaneous epileptic seizures is at best 
unclear.  
 
II. DETECTION, PREDICTION AND CLOSED-LOOP SYSTEMS 
 

Chronic “blind” stimulating devices intended to modulate 
seizures by activating or inactivating specific network regions   
remain an active area of research for epilepsy implants, due to 
their relative simplicity and the success of similar devices for 
treating symptoms of Parkinson’s disease and tremor.  More 
promising perhaps are reactive, “intelligent” devices, which 
are activated in response specific patterns of brain activity.  

Recent research suggests that epileptic seizures, 
particularly in the temporal lobe, may begin up to hours prior 
to their electrical onset [24].  A variety of computational 
methods have been proposed for measuring these changes, 
ranging from non-linear dynamics, to linear measures 
extracted from the EEG, to combinations of multiple 
parameters [24-28].  These algorithms complement other 
signal processing methods to rapidly detect seizure onset on 
EEG, which can be used to trigger therapeutic intervention 
[29, 30].  Exactly how, and in which types of epilepsy these 
algorithms are best employed remains to be determined.  
Triggering therapy to seizure detection may be quite useful 
for epileptic foci in the hippocampus, where seizures may 
remain confined for up to 10 seconds prior to propagation.  
Seizures which spread much more rapidly, such as in the 
frontal lobe, may be much more difficult to approach with 
this technique, and may require recognition of seizure 
precursors to first localize epileptic foci in these regions, as 
well as guide intervention.  While some investigators 
postulate that waiting until electrical seizure onset is detected 
on EEG may be too late to disrupt clinical seizures, most 
acknowledge that devices based on seizure detection are 
likely to be the first generation of implantables for epilepsy.  
Prediction-based devices are likely to be more complex, 
requiring multiple input channels to allow spatial sampling of 
the electrocorticogram, and multiple stimulating electrode 
sites, in order to disrupt the process of seizure generation.  
Early evidence suggests that both seizure detection and 
prediction devices will need to be “tuned” to individual 
patient patterns, and may require fusion of a number of 
features extracted from the EEG signal for optimal 
performance [28]. A schematic for one such implantable 
device is presented in Figure 1.  Incorporating this ability in 

the 100 kHz processing environment typical of implantable 
devices is a formidable engineering challenge.  

 
 
 
 
 

III. DIFFERENT FROM CARDIOLOGY DEVICES 
 

As epilepsy devices are developed, it is only natural to 
look to their cardiology predecessors, particularly implantable 
cardiac defibrillators (ICDs) for comparison.  These devices 
typically monitor a single channel of the ECG for life-
threatening arrhythmia patterns.  When such a pattern is 
detected the device triggers a program of escalating electrical 
stimulation, which increases in intensity, until arrhythmias 
are controlled.  Side effects can be appreciable, sometimes 
causing significant discomfort and pain, at higher energies.  
Patients may lose consciousness or fall to the ground either as 
a result of decreased blood flow to the brain, since 
arrhythmias are monitored for unequivocal onset, or as a 
result of high energy shocks delivered by the device.  Since 
the purpose of these devices is to save lives, such side effects 
are considered tolerable and are accepted. 
 Epilepsy devices are both more complex and subject to 
lower tolerance for side effects than their cardiologic analogs.  
Since their purpose is to prevent seizures and their symptoms, 
such as loss of awareness, distracting sensations and 
involuntary movements, side effects such as significant pain 
and falling are unacceptable.  Rather than prevent death, these 
devices are intended to restore normal life and behavior, such 
as allowing affected individuals to drive.  Error tolerance in 
event detection will be similarly low, compared to ICDs, as 
even a single seizure while driving on the highway provides 
unacceptable risk to many active candidates for such therapy.   
Different from ICDs, it is less likely that the specific patterns 
to be recognized by epilepsy devices will be generalizable 
from one patient to the next.  Rather, seizure detection and 
prediction algorithms are likely to be “tuned” to the 
individual patterns, for maximal performance. Similar to 
ICDs, devices based upon seizure detection or prediction will 
likely contain programs of escalating intervention to broaden 

Figure 1:  Schematic of  “intelligent” epilepsy device, 
including data acquisition, pre-processing, feature extraction, 
classification stages. 
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the number of electrode contacts being activated and increase 
stimulation intensity or change stimulating paradigms, if 
seizures are not prevented or their spread controlled.  In one 
such scheme, our group has suggested that stimulation 
intensity and distribution should be guided by estimated 
probability of seizure onset over time [24].  In this way, mild 
stimuli can be initiated during periods of low but rising 
probability of seizure onset.  Since these mild stimuli are 
likely to be relatively benign, they can hopefully be delivered 
with relative impunity during periods when seizure precursors 
first begin, where the false positive rate of seizure prediction 
is high.  Similarly, as the probability of seizure onset 
increases, and stimulation increases in spatial distribution and 
intensity, false positive predictions must also decline in a 
similar fashion.  This is but one potential therapeutic scheme 
of many, which could be employed to control implantable 
devices for epilepsy. 
 

IV. TRIALS AND VALIDATION 
 

The most prudent way of translating research on seizure 
detection, prediction and intervention for implantable devices 
into the clinical realm is not clear.  The burgeoning clinical 
need for such treatment must be carefully weighed against the 
potential morbidity of somewhat empirical technologies 
based upon limited animal experimentation.  The current state 
of research and development suggests that the goal is best 
accomplished through a two-pronged approach involving (1) 
staged, pilot clinical research trials of therapeutic 
interventions, and on-line detection and prediction algorithms 
in humans and (2) basic research into the mechanisms 
underlying seizure generation and spread.  Pilot studies of 
brain stimulation technology, partnering industry with 
academic centers in the United States, Europe and Canada are 
rapidly advancing our knowledge of how to implement 
implantable epilepsy devices.  In particular, they are pointing 
out the potential technological pitfalls of such devices, and 
how to address problems associated with localization of 
specific targets, including the role of brain imaging and 
intraoperative neurophysiology, and how to measure outcome 
and adverse effects of this therapy and associated procedures.  
An MRI scan of a patient enrolled in such a trial is 
reproduced in Figure 2.  At the same time, basic research into 
related work in engineering, neuroscience and computational 
modeling of neuronal networks will help improve targeting, 
timing and efficacy of clinical devices in an iterative fashion.  
While the ultimate goal of this research is to bring devices for 
epilepsy into the clinical realm as soon as possible, it is 
important that this desire be tempered by the need to 
understand the basic principals upon which therapy is 
predicated, at least to the degree that the potential for long-
term side-effects, such as kindling of new epileptic foci, is 
understood. 
 
 
 

 
Figure 2:  MRI of patient implanted with anterior thalamic nucleus stimulator 
for epilepsy. 
 
 It is not quite clear what kind of clinical trials and results 
will be required to stimulate acceptance of implantable 
devices for epilepsy.  In the long run, double blind, controlled 
trials of sufficient power to demonstrate considerable efficacy 
will be required.  While it is difficult to speculate just how 
effective these devices will need to be to gain acceptance, 
many investigators feel that they will need to demonstrate 
considerably more than then 10-12% seizure-free rate or 20-
30% average reduction in number of seizures that are seen in 
most new seizure medications as they are brought to market.  
It seems natural to assume that in order to undergo 
intracranial surgery, though the potential morbidity and 
mortality are low, most individuals will require a substantial 
promise of being seizure free or nearly seizure free, in order 
to move forward, unless there is some other clear clinical 
benefit to the devices, such as stopping falls or seizur-related 
injuries.  This would apply primarily to those individuals who 
have some control on medications, but continue to have 
enough seizures so that they cannot drive, and suffer 
significant negative impact on their quality of life.  For those 
individuals with no other therapeutic options, even a small 
potential benefit may be adequate to consider an implant trial. 
 

V. CONCLUSION 
 

A convergence of new findings in biomedical 
engineering, clinical epileptology and neuroscience, coupled 
with keen interest from industry and a great clinical need are 
rapidly pushing technology for implantable devices to treat 
epilepsy forward.  Development of better algorithms to detect 
and predict seizures is proceeding in parallel with new 
technologies to arrest seizures, both in vitro and in vivo.  
Early positive results of animal experiments, particularly 



utilizing electrical stimulation, are forming the foundation 
upon which pilot human trials are based.  Basic science 
research into the mechanisms underlying these therapies and 
their effects is also moving forward, although more slowly.  
Accepted and FDA approved cardiologic devices are 
providing models for the development of neurological 
implants, and experience with similar devices for Parkinson’s 
disease, though not yet FDA approved, are accelerating 
development.  Clinical performance standards for implantable 
devices for epilepsy will likely require greater efficacy than 
new antiepileptic drugs and the vagal nerve stimulator, due to 
the invasiveness of newer techniques.  New techniques for 
seizure detection and prediction will likely enable 
individually trained, customized, intelligent devices which, 
though more complex than “blind” stimulating devices, may 
have the potential to demonstrate much greater efficacy in the 
long term, provided computational burden and the side effects 
of brain stimulation in the region of the epileptic focus are 
acceptable. 
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